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Medical therapy of pituitary adenomas
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The physiologic experiments of the 1950s and 1960s that established the hypothalamic regulation of pituitary function led to the biochemical
characterization of the various release and inhibiting hormones and their receptors over the next two decades and ultimately to the
development of medical therapies for the various pituitary adenoma types. The paradigm of medical therapy is the extremely successful use of
dopamine agonists (DA) for the treatment of prolactinomas, which built upon the basic knowledge that dopamine is the physiologic prolactin
(PRL) inhibitor factor. The discovery of somatostatin and its receptors led to the development of somatostatin receptor ligands (SRLs) for the
treatment of acromegaly and thyrotropin (TSH)-secreting adenomas, Knowledge of how growth hormone (GH) interacts with its receptor led to
the development of pegvisomant, which blocks the binding of GH to its receptor. Early clinical observations of patients with acromegaly have
led to the use of estrogens and selective estrogen receptor modulators to aid in its treatment. DAs and SRLs have only modest activity in
Cushing’s disease and most therapies involve enzymatic blockade of the various steps in cortisol synthesis, the two most recent being
osilodrostat and levoketoconazole. Blockade of the cortisol receptor by mifepristone was found accidentally but then was established as a good
treatment for Cushing’s syndrome. The finding that clinically nonfunctioning adenomas had dopamine receptors led to the use of DA in these
patients as well. Finally, an understanding of some of the abnormal molecular pathways underlying the rare aggressiveness of some adenomas
and carcinomas has led to the use of temozolomide and now other chemotherapies and immunotherapies in such patients.
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At the young age of 39, Seymour Reichlin, having studied under the
“Father of Neuroendocrinology,” Sir Geoffrey Harris at Oxford, wrote the
definitive article “Neuroendocrinology” in the New England Journal of
Medicine in 1963 (1). This review of the field strongly influenced me and
many others to go into neuroendocrinology from both basic science and
clinical medicine aspects. The regulation of the secretion of each of the
pituitary hormones by the hypothalamus was explained in depth, includ-
ing the concepts that there were specific hormonal releasing and inhibit-
ing factors and that various neurotransmitters were involved in such reg-
ulation. These concepts were critical to the subsequent development of
the various medical treatments of pituitary tumors (Table 1). In this pa-
per, I review the development of these medical treatments from a his-
torical perspective with the goal of providing insight into how they were
developed and used clinically. However, a detailed description of exactly
how and when to use them in specific clinical circumstances is beyond the
scope of this paper.

Prolactinomas
Prolactinomas are the most common type of hormone-secreting ade-
noma, comprising close to 50% of cases (2). As Reichlin noted (1),
prolactin (PRL) is tonically inhibited by the hypothalamus via a PRL
inhibitory factor (PIF). Experiments in rats showed that tuberoinfundibu-
lar dopamine released into the hypothalamic-pituitary portal vessels in
the median eminence was the physiologic PIF with direct action on the
pituitary to inhibit PRL release (3). Studies with low-dose dopamine infu-
sions in humans showed that dopamine blood concentrations similar to
those found in rat and monkey hypothalamic-pituitary portal blood were
able to suppress PRL secretion (4). Dopamine binds to the D2 class of
dopamine receptors on the lactotroph cell membrane (3). Medical ther-
apy using dopamine receptor agonists is the primary therapy for prolacti-
nomas because of its very high efficacy but transsphenoidal surgery can
also be done (2).

As experiments establishing dopamine as the physiologic PIF were
taking place, other experiments showed that ergot derivatives could
suppress PRL secretion. Shelesnyak et al. found that ergot derivatives
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could decrease luteotrophic hormone (prolactin) secretion in rats (5,
6). The ergot derivative, bromocriptine, was the first dopamine agonist
(DA) introduced into clinical practice by Peter Lutterbeck (7, 8). Early
studies showed that for microprolactinomas (tumors < 10 mm in di-
ameter), bromocriptine is successful in 80% to 90% of patients in nor-
malizing serum PRL levels, restoring gonadal function, and shrinking
tumor mass (9). For macroprolactinomas, normalization of serum PRL lev-
els and tumor mass shrinkage occur in about 70% of patients treated
with bromocriptine even when given at low doses (9). In most patients,
headache and visual field defects improve dramatically within days after
the first administration of bromocriptine, with gonadal and sexual func-
tion improving even before complete normalization of serum PRL lev-
els. However, some patients have delayed responses. In the multicenter
U.S. trial of patients with macroadenomas treated with bromocriptine,
some patients had progressive decreases in size of their tumors even after
1 year of treatment (10). Reduction in PRL levels almost always precedes
any detectable change in tumor size, and PRL nonresponders are also tu-
mor size nonresponders. In some patients, normalization of PRL levels is
accompanied by only modest changes in tumor size.

Cabergoline is now preferred to bromocriptine, as it has been found to
have greater efficacy and tolerability than bromocriptine (9, 11, 12). With
cabergoline, tumor size has been shown to reduce tumor size in 80% of
patients and to restore normal PRL levels in 95% of patients (11). A sys-
tematic review and meta-analysis showed significant differences in favor
of cabergoline versus bromocriptine with respect to clinical efficacy and
adverse events (13). Cabergoline is effective in normalizing PRL levels in
about 50% of patients unable to achieve this with bromocriptine (9).

Restoration of normal PRL levels by either drug restores fertility in
most cases. Therefore, the drugs must be continued to allow ovulation
to occur and then are stopped once pregnancy is confirmed. When given
in this fashion, neither drug has been found to increase fetal malforma-
tions or other adverse fetal or maternal outcomes in a compilation of the
literature (14). However, one study of 183 pregnancies found that com-
pared with a control group, dopamine agonist exposure was associated
with an increased risk of preterm birth and early pregnancy loss and an
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Table 1. Medications used to treat pituitary adenomas

Target Prolactinoma Acromegaly
Cushing’s

Disease TSHoma CNFA

Aggressive
Adenomas,
Carcinomas

Pituitary Dopamine Somatostatin Pasireotide Somatostatin Dopamine Temozolomide
Agonists Receptor Receptor Agonists

Ligands Ligands

Somatostatin Dopamine Dopamine Somatostatin Immune
Receptor Agonists Agonists Receptor Checkpoint
Ligands Ligands Inhibitors

Everolimus
Bevacizumab

Lapatinib

Target Pegvisomant Metyrapone PTU
Organ Estrogen Ketoconazole Methimazole

SERMS Mitotane
Etomidate

Osilodrostat
Levoketoconazole

Target Mifepristone Beta
Tissue Blockers

Abbreviations: CNFA – clinically nonfunctioning adenoma; PTU – propylthiouracil; SERM – selective estrogen receptor modulator; TSHoma – TSH secreting
pituitary adenoma.

insignificant increase in fetal malformations (15). Because these drugs
reduce tumor size, when they are stopped there is a risk for tumor en-
largement during pregnancy. The risks of symptomatic (headaches, vi-
sual field defects) tumor enlargement are 2.5% in pregnant women with
microprolactinomas, 18.1% for those with macroprolactinomas with no
prior surgery or irradiation, and 4.7% for those with macroadenomas with
prior surgery/irradiation (14).

As noted above, 10%–20% of patients are unable to achieve normopro-
lactinemia with conventional doses of DA (up to 7.5 mg/d for bromocrip-
tine or 2.0 mg/wk for cabergoline) and are therefore deemed to be
resistant to these drugs (16). Resistance with respect to tumor size re-
duction also occurs, but the precise definition of such is uncertain; most
use a reduction in size of <50% as the definition. Such resistance is associ-
ated with a decrease in the number of D2 receptors on the cell membrane
and a decrease in the G protein that couples the D2 receptor to adenyl cy-
clase (16). The underlying genetic underpinnings for this heterogeneity of
response are not known (16). Several alternatives are available for such
patients, including increasing the dose of the dopamine agonist, switch-
ing bromocriptine for cabergoline, transsphenoidal surgery, and adding
other drugs such as somatostatin receptor ligands (SRLs; 17, 18) or met-
formin (19). About 50% of patients resistant to bromocriptine will then
respond to cabergoline (9, 16). However, there are few data regarding the
efficacy of bromocriptine in patients resistant to cabergoline, so this can
be tried recognizing the uncertain benefit (16). Estrogen use may cause a
decrease in the effectiveness of DA so that stopping exogenous estrogen
may be helpful. A few studies have shown variable efficacy in reducing PRL
levels with the use of selective estrogen receptor modulators (SERMs) on
PRL secretion in women (20) and aromatase inhibitors in men (21). Rare
patients with very aggressive tumors and the even rarer patients with
PRL-secreting pituitary carcinomas that are resistant to cabergoline re-
spond in about 40% of cases to temozolomide, an akylating agent (11, 12).
There are also individual case reports of such patients responding to other
medications, including immune checkpoint inhibitors, tyrosine kinase in-
hibitors, and mammalian target of rapamycin (mTOR) inhibitors (11, 12).

Once concern about using greater than standard doses of cabergo-
line has been the development of cardiac valve disorders. Large doses
of cabergoline have been associated with leaflet and chordae tendinae
thickening with incomplete valvular closing and regurgitation in patients
with Parkinson’s disease (22, 23). Histologically, there is fibroblast pro-

liferation with deposition of a plaque-like process on the valve leaflet
surfaces that may also encase the chordae tendinae (22, 24). Cabergo-
line, but not bromocriptine, has the ability to stimulate serotonin 2B re-
ceptors which results in activation of several mitogenic pathways, ulti-
mately causing this overgrowth valve disorder (24). A meta-analysis of
studies showed no increase in risk for clinically significant cardiac valve
disease in patients treated with conventional doses of cabergoline, that
is, up to 2 mg/wk, although there was a slight increase in mild tricuspid re-
gurgitation (25). Because of the known increased risk of valvular disease
with much higher doses, it is now recommended that patients treated
with doses greater than 2 mg/wk undergo echocardiography at the time
of instituting such doses and then yearly thereafter (9, 11, 12). Whether
echocardiography should be done in patients receiving lower doses is con-
troversial (9, 11, 12).

Both bromocriptine and cabergoline can cause nausea, vomiting, con-
stipation, headache, fatigue, and dizziness; these symptoms tend to occur
after the initial dose and with dosage increases but can be minimized by
introducing the drugs at a low dosage and by gradual dose escalation (9,
12). Long-term, these adverse effects usually do not affect adherence. If
these drugs cause significant tumor shrinkage of tumors located in the
skull base, cerebrospinal fluid rhinorrhea may occur that will need sur-
gical repair of the area of leakage (9, 12). Mental “fogginess” and psy-
chosis have been rarely reported with both drugs (9, 11, 12). However, it
has more recently become apparent that impulse control disorders (ICD)
occur in frequencies in reported series varying from 0% to 60% depending
upon the type of assessment used (26). Hypersexuality, compulsive shop-
ping, gambling, compulsive eating, and punding were the most frequent
types of ICD and symptoms improve with drug dose reduction or cessa-
tion (26). Because such ICD’s may be hidden from family and friends and
therefore can be potentially ruinous in the case of compulsive gambling,
it is important to counsel patients and appropriate family members not
only when initially prescribing the drugs but at all subsequent visits.

Some patients can be withdrawn from DA over time. In a meta-analysis
of 24 studies of 1106 patients, with bromocriptine 15.1% of patients with
macroadenomas and 25.9% of those with microadenomas could be suc-
cessfully withdrawn and with cabergoline 33.5% of those with macroade-
nomas and 40.8% of those with microadenomas could be successfully
withdrawn (27). Better numbers are seen if the duration of therapy is
more than 2 years compared with 1 year (27). There are no studies of
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outcomes of patients who remain on dopamine agonist therapy for many
years.

Those women who were treated with dopamine agonists to restore
menses can have the drugs withdrawn at the time of menopause, un-
less the drugs were used to control tumor size. For all hyperprolactinemic
women not treated with DA, monitoring of PRL level every 6 to 12 months
is important to detect any patient who might develop an enlarging tumor
that might require treatment.

Acromegaly
Reichlin was one of the first to demonstrate the importance of the hy-
pothalamus in regulating growth hormone (GH) secretion by showing that
hypothalamic lesions could decrease pituitary GH content (28). It was not
until 1982 that GH releasing hormone (GHRH) was characterized (29, 30).
Reichlin did not recognize in 1963 that there is also a hypothalamic GH
inhibiting factor, later called somatostatin. In 1968, Krulich et al. noted
an inhibiting substance in hypothalamic extracts (31) and Brazeau et al.
finally characterized the structure of somatostatin in 1978 (32). Over the
ensuing decades, analogs of somatostatin have become the cornerstone
of medical therapy for patients with acromegaly who are either not candi-
dates for or who have not been cured by transsphenoidal surgery, which is
the initial procedure of choice (33, 34). Of course, patients not controlled
by an initial surgery may also be treated with a second surgery or radio-
therapy (33, 34). Control of acromegaly is defined biochemically as a ran-
dom GH level <2.5 ng/mL or <1.0 ng/mL, depending upon the study, and
an insulin-like growth factor-1 (IGF-1) within the normal range (33, 34).
When such control is achieved, often with multiple therapeutic modali-
ties (surgery, medication, and sometimes irradiation), there is a reduction
in the long-term outcome of mortality to normal, along with reductions
in comorbidities such as diabetes and hypertension and improvements in
symptoms and quality of life (33–37).

Because somatostatin is rapidly degraded enzymatically, synthetic
SRLs were developed with longer half-lives (38). There are five receptor
subtypes (SSTR1-5) (38, 39). Octreotide is highly selective for SSTR2 and
less so for SSTR5 but has a 20- to 40-fold greater potency than somato-
statin (38). Lamberts et al. were the first to report the beneficial effects
of octreotide given subcutaneously three times daily (40). Subsequently,
large, multicenter trials established the long-term efficacy of subcuta-
neous (41) and then long-acting release (LAR) forms of octreotide (42). A
long-acting modification of another SRL, lanreotide, soon followed (43)
and both long-acting drugs appear to be similarly efficacious (38, 44)
with an ability to control elevated GH and IGF-1 levels in about 40% of
patients. Tumor size can also be reduced in about two-thirds of patients
(45). Octreotide LAR has to be given by deep intramuscular injection by
a trained healthcare professional whereas lanreotide depot is given by
deep subcutaneous injection and can be self-injected or injected by a fam-
ily member/partner after instruction. This difference in administration as
well as insurance issues generally dictates which preparation is chosen
for a given patient and can affect adherence. Pasireotide is a second-
generation SRL which has a higher affinity for SSTR3 and SSTR5 compared
with octreotide and lanreotide (38). A head-to-head study showed that
pasireotide LAR was more effective than octreotide (31.3% vs. 19.2% in
controlling acromegaly) (GH < 2.5 ng/mL and age-adjusted normal IGF-
1 levels) (46). Other SRLs in the development pipeline include CAM2029
and Veldoreotide (38).

An oral octreotide formulation has also become available. It uses
an enteric-coated capsule that is resistant to stomach acid and the
octreotide is absorbed by using a permeability enhancer that allows for
the transient opening of the connections between intestinal epithelial
cells (47). Studies which involved switching participants with acromegaly
who were controlled on injectable SRLs to this oral formulation showed
that 65% (47) and 58% (48) maintained normal IGF-1 after 1 year. An-
other oral octreotide formulation, paltusotine, is in late clinical develop-
ment with a phase III study showing that 83% of patients were able to
maintain normal IGF-1 levels when switched from injectable SRLs (49).

All SRLs, including oral preparations, are generally well tolerated but
commonly cause gastrointestinal side effects such as diarrhea, nausea,
and flatulence (33). Cholelithiasis may occur but symptomatic gall blad-

der disease is rare (33). Because SRLs can inhibit insulin secretion, glucose
tolerance can sometimes worsen (33). In addition, pasireotide inhibits in-
cretins (38). In the head-to-head study of Colao et al., 57.3% of those
treated with pasireotide and 21.7% of those treated with octreotide had
hyperglycemia adverse events (46) and this can affect adherence.

Dopamine agonists have also been used in acromegaly. Although early
studies with bromocriptine showed only modest success (50), later stud-
ies using cabergoline showed that about one-third of patients were able
to normalize IGF-1 levels (51). This effect of cabergoline was strongly
affected by baseline IGF-1 levels (51). However, when cabergoline was
added to SRL’s in patients whose IGF-1 levels had remained elevated, 52%
of the patients had their IGF-1 levels normalized (51). The Endocrine So-
ciety Acromegaly Guideline concluded that “cabergoline is most likely to
be useful in patients with just modest elevations of GH and IGF-1 levels,
with or without concomitant hyperprolactinemia” (33).

Pegvisomant is a modified GH that acts as a competitive inhibitor to GH
for binding to the GH receptor; therefore, IGF-1 levels fall but GH levels do
not and there is no anti-tumor effect (33). It is generally used as a second-
line therapy singly or in combination in patients not controlled with SRLs
(33, 34, 52). In the original trial, 95% of patients achieved normal IGF-1
levels (53) and in the 10-year surveillance follow-up study (ACROSTUDY),
73% of the 2090 treated patients achieved normal IGF-1 levels (54). The
long-term study mentioned above did not show an excess number devel-
oping tumor enlargement and only 3% of patients developed significant
transaminase abnormalities, which were usually transient (54). Pegviso-
mant use is associated with improved glucose tolerance (55).

As noted above, not all patients achieve GH/IGF-1 targets with single-
drug therapies and drugs may be switched within classes or between
classes. The molecular basis for this heterogeneity of response to SRLs
is poorly understood (52). In patients with IGF-1 levels < twice the upper
limit of normal, cabergoline is often tried initially, recognizing that
only about one-third of patients will respond; however, it is oral, well
tolerated and relatively inexpensive. If cabergoline is not effective or in
patients with higher IGF-1 levels, either lanreotide depot or octreotide
LAR is usually begun and the dose titrated based on IGF-1 levels (33, 34)).
Cabergoline added to SRLs in patients whose IGF-1 levels had remained
elevated resulted in the normalization of IGF-1 levels in 52% of patients
(51). Another option in such patients is to switch to or add pegvisomant
(33, 34). Pegvisomant given weekly to patients uncontrolled by SRLs was
able to cause a normalization of IGF-1 levels in 94% of 34 patients (56).
Yet another combination is pegvisomant plus pasireotide (57). Estrogens
have long been known to decrease the generation of IGF-1 by GH in pa-
tients with acromegaly (58). A recent study showed that estrogens could
normalize IGF-1 levels in 25% of acromegalic women uncontrolled by
SRLs (59). Furthermore, when the SERMs clomiphene (60) and raloxifene
(61) were added to the treatment of women uncontrolled by SRLs, over
40% had normalization of IGF-1 levels. The use of SERMs has not yet
become routine.

Cushing’s Disease
In his 1963 review, Reichlin discussed what was known then about the hy-
pothalamic regulation of ACTH, including the accumulating data for a cor-
ticotropin releasing factor separate from vasopressin (1). ACTH-secreting
pituitary adenomas comprise about 4% of clinically prevalent cases of pi-
tuitary tumors (2). In patients with acromegaly, about two-thirds of cases
are macroadenomas (2, 33, 34) but in patients with Cushing’s disease,
about 90% of cases are microadenomas (2, 62, 63), making cure rates for
transsphenoidal surgery much higher and the need for medical therapy
much lower. Initial surgical cure rates are about 80% for patients with
microadenomas and 60% for those with macroadenomas with recurrence
rates as high as 35% being reported in some series (63). Those not cured
by surgery and those with recurrence can be treated with second surg-
eries, irradiation, or medical therapy. Cushing’s disease is associated with
an increased long-term mortality and treatment that puts the patient into
biochemical remission is associated with only a reduction in standard-
ized mortality ratio from 5.7 to 2.3 (64). Similarly, complications of Cush-
ing’s disease, such as type 2 diabetes, osteoporosis with fractures, and
cardiovascular disease all decrease substantially with treatment that puts
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patients into remission but do not return entirely to normal (63). Several
mutations have been discovered in patients with Cushing’s disease, the
most common being USP8, present in 36%–60% of adenomas (63). The
USP8 mutation causes an overexpression of EGFR which results in an over-
production of ACTH (63). As yet, it is unknown whether the presence of
any of these mutations alters the individual patient response to surgical
or medical therapies.

Medical therapy can be directed at the pituitary to decrease ACTH se-
cretion, at the adrenal cell to decrease cortisol synthesis, and at the cor-
tisol receptor in various tissues to block glucocorticoid activity (63). In
1975, Krieger and colleagues first reported the successful use of cypro-
heptadine, an anti-serotonin agent, for the treatment of Cushing’s dis-
ease, based on the concept of increased hypothalamic serontoninergic
activity as being contributory to the development of the condition (65).
Although subsequent studies showed much lower response rates and fur-
ther trials were not done, the potential for successful medical treatment
had now been demonstrated and this stimulated the development of
many other medications over the years.

Octreotide and lanreotide are not very effective for the treatment of
Cushing’s disease. Corticotroph adenomas express substantial amounts
of somatostatin receptor subtype 5 in addition to subtypes 1, 2, and 3
(66). Unlike octreotide and lanreotide, pasireotide has substantial action
at subtype 5 (66). In a prospective, randomized study of 162 patients with
Cushing’s disease, pasireotide given in daily subcutaneous injections was
able to normalize urinary free cortisol (UFC) at 12 months in 19.1% of pa-
tients, although many more had falls in UFC that did not reach normal
(67). However, a worsening of glucose tolerance occurred in 73% (67).
In a subsequent study of 150 patients treated with monthly pasireotide
LAR, 62 (40%) patients were able to normalize UFC at 7 months (68). In
a study in healthy volunteers, it was found that pasireotide reduced in-
cretin (glucagon-like peptide 1 [GLP-1] and glucose insulinotropic pep-
tide [GIP]) and insulin secretion, without affecting insulin sensitivity (69).
The relatively low efficacy and the high rate of glycemic worsening have
prevented substantial uptake of this treatment modality.

Dopamine D2 receptors have been found in 80% of corticotroph tu-
mors (70). A multicenter study of 53 patients treated with a median
cabergoline dose of 2·3 mg/wk (range 0·5–6·0) showed that normal UFC
levels could be obtained in 40% of patients, but only 23% of those showed
sustained UFC normalization after a 2.5-year follow-up (71).

A number of steroidogenesis inhibitors have been used to treat Cush-
ing’s syndrome of all types (72, 73). Mitotane (o,p’-DDD) is an adrenolytic
agent that has been used at low doses, for the treatment of Cushing’s dis-
ease. Although it is efficacious (48/67 [72%] normal UFC), it has substan-
tial adverse effects (74) and because of the efficacy of other medications,
mitotane is now rarely used for the treatment of Cushing’s disease.

Metyrapone blocks the 11-hydroxylase enzyme that converts 11-
deoxycortisol to cortisol and also inhibits aldosterone synthase (72). A
large multicenter study from the United Kingdom of 164 patients with
Cushing’s syndrome 96 with Cushing’s disease) treated with metyrapone
monotherapy for up to 16 years showed that UFC normalized in 53% of pa-
tients (75). The increased ACTH stimulates other pathways resulting in in-
creased androgen production with hirsutism in women and hypertension
and hypokalemia from the increased 11-deoxycortisol levels (64, 72).

Ketoconazole is an imidazole derivative that has been the mainstay
of medical treatment for Cushing’s syndrome for many years. It blocks
several steps in cortisol synthesis, including side chain cleavage, 17-
hydroxylase, 17,20 lyase, 11β-hydroxylase, and aldosterone synthase (64,
73). A French series reported data on 200 patients treated with ketocona-
zole in doses ranging from 200 to 1200 mg/d, with 49% achieving a nor-
mal UFC (76). The drug was stopped in 26.8% of patients due to lack of
efficacy and in 25.6% due to adverse effects. In this series, liver enzyme
elevations were found as follows: <5x increase in 30 (15.8%), a 5–10x in-
crease in 4 and a 40x increase in 1. Other side effects of ketoconazole
include rash, gastrointestinal symptoms and hypogonadism in men. In
2013, the U.S. Food and Drug Administration (FDA) specified a “black box
warning” regarding liver toxicity with ketoconazole use; ketoconazole had
never had U.S. FDA approval for use in Cushing’s syndrome (77). The Euro-
pean Medicines Agency recommended against prescribing ketoconazole

in 2013 as well (78). Ketoconazole is no longer available for use in many
countries as a result.

Levoketoconazole is an enantiomer of ketoconazole which has greater
potency in inhibiting steroidogenesis enzymes while being potentially
less hepatotoxic (72). A study of 94 patients with Cushing’s syndrome (80
with Cushing’s disease) showed that 31% of patients were able to achieve
a normal UFC (79). The most common adverse events were nausea and
headache but adverse events led to study discontinuation in 12 of the
94 patients. Alanine aminotransferase reversibly increased to more than
three times the upper limit of normal in 10 patients (79). In a further 6-
month extension of this study of 60 subjects, the number with normal UFC
decreased from 33/54 (61%) to 18/44 (41%) 12 months later (80). Flu-
conazole is another oral imidazole derivative that has been shown to be
effective in the treatment of patients with Cushing’s disease in a few in-
dividual case reports (81) but there are no studies documenting efficacy
in a large number of patients.

Etomidate is another imidazole that inhibits 11β-hydroxylase, aldos-
terone synthase, and side chain cleavage. It was originally used as an
anesthetic agent but was found to cause adrenal insufficiency. Subse-
quently, it has been used for the treatment of severe hypercortisolemia
in the critically ill patient, usually preoperatively to improve surgical risk
(infection, wound dehiscence, hypercoagulability, hypertension, hyper-
glycemia). It must be given intravenously in the intensive care unit (ICU) in
subhypnotic doses. It has a rapid onset of action with cortisol levels falling
in 12–24 h. There is a need to monitor serum cortisol and potassium lev-
els closely. It is often used in a “block and replace” strategy with higher
doses and concomitant IV hydrocortisone (0.5–1 mg/h). Thus, it has a very
limited but specific use (82).

Osilodrostat inhibits 11-β hydroxylase and aldosterone synthase, sim-
ilar to metyrapone. In a study of 137 patients with Cushing’s disease with
active disease following surgery or who were not surgical candidates, 91
(66.4%) achieved a normal UFC after 48 wk of treatment (83). A long-term
extension study showed that of these 91 patients, 86 maintained their
complete response at wk 72 (84). The most common adverse effects were
nausea, hirsutism, headache, and fatigue with 27/137 discontinuing the
medication because of adverse effects over the entire 72-wk period (84).
Hypocortisolism requiring a temporary cessation with dose reduction oc-
curred in 54% of subjects with 22.6% requiring glucocorticoid therapy
(84). Thirteen patients had tumor enlargement requiring discontinuation
of treatment (84). Interestingly, 3 patients have been described who had
persistent steroidogenesis blockade lasting from 6 wk to 9 months fol-
lowing cessation of osilodrostat (85). The mechanism for this prolonged
blockade is unknown.

Mifepristone, a glucocorticoid receptor antagonist was first demon-
strated to be able to successfully treat a patient with Cushing’s syndrome
due to the ectopic secretion of ACTH by Nieman et al. (86). In a literature
review in 2010, it was noted that only 37 patients had been treated with
mifepristone for various types of Cushing’s syndrome (87). Its affinity for
the glucocorticoid receptor is more than 10-fold greater than that of cor-
tisol. Mifepristone levels rise within a few hours after dosing, but because
it is highly protein bound, it has a long half-life of elimination of 85 h and
can appear in the circulation up to 2 wk after being stopped (88).

A study of 50 patients with Cushing’s syndrome, including 43 with
Cushing’s disease, showed that after 24 wk, 60% of 25 treated patients
with a concurrent diagnosis of type 2 diabetes or impaired glucose tol-
erance had a significant reduction of at least 25% from baseline in area
under the curve for glucose during an oral glucose tolerance test, and
38% of 21 patients with hypertension showed a significant reduction of at
least 5 mm Hg in diastolic blood pressure (DBP) (88). Insulin resistance,
weight, waist circumference, and quality of life also improved (84). Ad-
verse effects include adrenal insufficiency (this diagnosis was difficult, as
it was based solely on symptoms, as blood cortisol and ACTH levels are
high, not low), hypokalemia due to activity of these higher cortisol lev-
els acting at the mineralocorticoid receptor, and menorrhagia in women
because it causes an endometrial condition termed progesterone recep-
tor modulator-associated endometrial changes (PAEC), which is not a pre-
malignant lesion (88). One potential concern with mifepristone use was
the enlargement of corticotroph adenomas (Nelson’s syndrome) but this
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turned out to not be a major concern (89), although tumor size does need
to be followed in treated patients with Cushing’s disease.

To reduce the adverse effects of mifepristone, relacorilant has been
developed that binds to the glucocorticoid but not the progesterone re-
ceptor (90). A phase II study over 12–16 wk in patients with Cushing’s
syndrome showed that a dose of 400 mg/d achieved the DBP response
(≥5 mm Hg decrease) in 64% and a glycemic response in 50% (91). Ad-
verse effects noted included back pain, headache, edema, nausea, diar-
rhea, and dizziness but no vaginal bleeding or hypokalemia (91). Phase III
clinical trials are now ongoing.

Because of the increased morbidity and mortality when remission is
not achieved with surgery, medical therapy is usually initiated quickly.
Cabergoline is often tried initially as it is well tolerated and relatively in-
expensive but it is successful in less than one-third of patients; however,
if it is not successful other medications will be needed. Osilodrostat has
more recently become the primary medical therapy because of its high ef-
ficacy and relatively low rate of adverse effects compared with the other
medications. Mifepristone is often used for severe cases because of its
high efficacy in reducing the morbidity of Cushing’s syndrome; however,
it is difficult to use because of the inability to monitor therapy biochem-
ically and this limits wider usage. Ketoconazole is very cheap and is still
used in many countries worldwide but its liver toxicity precludes its use
for most patients in the United States, Europe, and many other countries.
Newer drugs on the horizon include relacorilant (91) and seliciclib (92),
which are in clinical trials. There are also individual case reports of pa-
tients treated with immune checkpoint inhibitors, vascular endothelial
growth factor (VEGF) antibodies, and mTOR inhibitors. Because of the
need to continue medical therapy for many years, pituitary irradiation,
usually stereotactic, is often given concomitantly to induce long-term re-
mission without medication.

TSH-Secreting Adenomas
Thyrotropin (TSH) releasing factor (TRF) as a regulator of pituitary thy-
roid stimulating hormone (TSH) was discussed by Reichlin but the con-
cept that somatostatin could suppress TSH from normal thyrotroph cells
and TSH-secreting tumors was not then known (1). TSH-secreting ade-
nomas are the least common of the hormone-secreting pituitary adeno-
mas, comprising about 1% (2, 93). Almost three-quarters secrete TSH
alone, but 19% cosecrete GH and 13% cosecrete PRL with three-quarters
being macroadenomas and only one-quarter being microadenomas (94).
Surgery is the primary treatment modality with medical therapy being
reserved for those failing surgical cure (93, 95).

SRLs are the major medical therapies when surgery fails to cure or if a
patient is not a candidate for surgery (93–95). There is high expression of
SSTR2 in almost all patients as well as SSTR5 (96). SRLs are able to nor-
malize thyroid hormone levels in over 90% of cases and reduce tumor vol-
ume by ≥20% in 50% or more of cases (93–95). Escape from control by or
failure to respond to SRLs have been reported in a small number of cases
(94). Dopamine receptors are also present in these tumors and dopamine
agonists have been used in small numbers of patients with variable
results (93).

Clinically Nonfunctioning Pituitary Adenomas
Clinically nonfunctioning adenomas (CNFA) range from being com-
pletely asymptomatic, and therefore being found either at autopsy
or incidentally on imaging, to causing significant symptoms due to
mass effects, such as headaches, visual disturbance or hypothalamic/
pituitary dysfunction (97). Symptomatic CNFAs are usually treated by
surgery but asymptomatic CNFAs are usually followed with serial imag-
ing and only operated if there is significant enlargement over time
(97). Overall, CNFAs comprise about one-third of pituitary tumors seen
clinically (2). For those tumors that undergo surgery, postoperative
imaging over time may show regrowth and the regrowth rate varies de-
pending upon whether routine radiotherapy was given. If there is no
tumor visible on MRI postoperatively, regrowth of tumor occurs in 7%
of those routinely treated with radiotherapy and in 14.0% of those not
treated with radiotherapy (97). If tumor is still visible on MRI postopera-
tively, regrowth of tumor occurs in 11.2% if those treated with radiother-
apy and 50.1% of those not treated with radiotherapy (97). With tumor

regrowth, therapeutic options include repeat surgery, radiotherapy, and
medical therapy.

Dopamine D2 and somatostatin SSTR2 and SSTR5 receptors are ex-
pressed on most CNFAs (98) and thus dopamine agonists and SRLs have
been tried as therapy. Greenman et al. studied three groups of patients,
finding that bromocriptine given to patients with CNFAs who had resid-
ual tumor on MRI following surgery caused the tumor mass to decrease
or remain stable in 48/55 (87%), that when bromocriptine was started
when tumor remnant growth became evident the growth stabilized or de-
creased in 14/24 (58%) patients, and tumor size decreased or remained
stable in 32/60 (53%) of subjects who had neither bromocriptine nor ra-
diotherapy (99). Batista et al. performed a prospective, randomized open-
label trial in patients with CNFAs following surgery, finding that in 59
patients randomized to cabergoline tumor shrinkage, stabilization, and
enlargement occurred in 28.8%, 66.1%, and 5.1% respectively while in the
57 randomized to nonintervention, these proportions were 10.5%, 73.7%,
and 15.8% (100). Botelho et al. found that the proportion of CNFAs that
reduced in size cabergoline was 19%, the number that were stable was
50% and 14% required additional intervention (101). In their review of 11
studies which examined the effects of SRLs on CNFAs, Colao et al. found
that visual fields improved in 27/84 patients (32.1%) but the changes in
tumor volume were much less impressive, with tumor reduction occurring
in only 5/100 patients, tumor increase occurring in 12/100 patients and
no size change in the remainder (102). Although these studies suggest
that cabergoline should be given to patients with tumor visible on MRI
postoperatively, such use has not gained wide acceptance. However, ra-
diotherapy is now reserved for patients with growth of a tumor postop-
eratively documented on serial surveillance MRI scans, even with tumor
visible on the initial postoperative scan. However, radiotherapy may be
given earlier when the tumor residual is substantial.

Aggressive Pituitary Adenomas and Carcinomas
Less than 1% of pituitary adenomas show progression of tumor growth
despite conventional, maximal treatment that includes repeat surgery,
radiotherapy, and medical therapy with dopamine agonists or SRLs (103,
104). The diagnosis of carcinoma can be made only if local (within the
CNS) or distant metastases can be demonstrated (103, 104). In a co-
hort of 171 patients from 15 European countries, 121 were aggressive
adenomas and 50 were carcinomas, about two-thirds were male, and
the origins of the aggressive tumors and carcinomas, respectively were
prolactinoma (31.4% and 32.0%), ACTH-secreting (26.4% and 38.0%,
GH-secreting (9.9% and 6.0%), nonsecreting (27.3% and 24.0%), and
FSH/TSH/unknown (5.0% and 0%) (105). At the time of the initial surg-
eries, the median Ki67 indices were 6% in the aggressive tumors and 10%
in the carcinomas (105).

Temozolomide is the major drug used for treatment of these condi-
tions (103–106) and was used in 91% of the European cohort patients
(105). Temozolomide is an oral alkylating agent that causes DNA dam-
age by adding methyl groups to guanine residues, which disrupts DNA
transcription (106). The gene methyl guanine methyltransferase (MGMT)
encodes the MGMT enzyme which catalyzes the removal of these methyl
groups (106); therefore, the presence of MGMT may limit the effective-
ness of temozolomide but the literature is inconsistent in this effect in
clinical practice (106). Of the 156 patients in the European cohort, 9.6%
had a complete response, 30.1% a partial response, 28.1% stable disease,
and 32.2% progressive disease (100); the mean durations of the complete
and partial responses were 6.4 years and 3.3 years, respectively but only
1.4 years in the stable disease group (106). Thirty-one of these received a
second temozolomide dose. Halevy and Whitelaw compared different tu-
mor types in a literature summary, finding the following responses: ACTH-
secreting adenomas – 56%, prolactinomas – 44%, GH-secreting adeno-
mas – 38%, and CNFAs – 22% (106). The most common adverse effects of
temozolomide are fatigue, rash, transaminitis, constipation, nausea, and
vomiting (98).

The management of patients who do not respond to or who later fail
to continue to respond to temozolomide is not clear and the use of indi-
vidual other agents has been limited to individual case reports and small
case series. Cytotoxic chemotherapy has included cisplatin/etoposide,

Thought Leaders Invited Review
Mark E. Molitch

https://doi.org/10.61373/bm024i.0127
5 of 9

BRAIN MEDICINE
Genomic Press

https://bm.genomicpress.com
https://doi.org/10.61373/bm024i.0127


bm.genomicpress.com

lomustine/5-fluorouracil, and 5-fluorouracil/cyclophosphamide/doxoru-
bicin but has had limited success (103, 104). Other therapeutic agents
that have shown benefits in small numbers of cases include Lapatinib,
a tyrosine kinase inhibitor that inhibits epidermal growth factor recep-
tor (EGFR) and ErbB2 (HER2), bevacizumab, a VEGF inhibitor, the mTOR
inhibitor, everolimus, and immune checkpoint inhibitors (103, 104, 107).
Peptide receptor radionuclide therapy uses radiolabled somatostatin re-
ceptor binding moieties has also been shown to be effective in a small
number of cases in whom somatostatin receptors could be demonstrated
on their tumors (103, 104, 107). In summary, none of these treatments
stand out as being better than another in patients failing temozolomide
based on the small numbers of patients treated. Therefore, the best treat-
ment might be one in which a trial for it is being undertaken at the nearest
center experienced in the treatment of such patients.

Conclusions
The extensive and detailed physiologic experiments of the 1950s and
1960s that established the hypothalamic regulation of pituitary function,
so succinctly summarized by Reichlin (1), led to the biochemical char-
acterization of the various release and inhibiting hormones (no longer
factors) and their receptors over the next two decades. This allowed
the development of medical therapies for the various tumor types. Over
the past two decades, knowledge of the molecular pathways involved
in hormone secretion and tumor pathogenesis is allowing the develop-
ment of even newer treatments that may ultimately be more specific and
efficacious.
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