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Therapeutic potential of liver X receptor beta in depression and anxiety
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Liver X receptors (LXRs), particularly LXRβ, are emerging as crucial players in the translation of basic neuroscience to clinical psychiatry. These
nuclear receptor transcription factors, initially known for their roles in cholesterol metabolism and inflammation, are now revealing promising
connections between molecular mechanisms and psychiatric symptoms. This review highlights recent breakthroughs in understanding LXRβ’s
regulation and function in behaviors relevant to depression and anxiety, derived from studies using animal paradigms that capture specific
features of these disorders. We explore how these preclinical findings are shaping our comprehension of mood-related behaviors at the
molecular level and potentially paving the way for innovative therapeutic strategies. As a ligand-activated transcription factor, LXRβ

represents a novel target for drug development, potentially bridging the gap between bench discoveries and bedside treatments for
neuropsychiatric disorders. We discuss the challenges and opportunities in translating LXRβ research into clinical interventions, emphasizing
the potential for personalized medicine approaches in psychiatry. This bench-to-bedside article underscores the importance of LXRβ research
in advancing our understanding and treatment of complex mental health conditions, while acknowledging the nuanced interpretation required
when extrapolating from animal studies to human disorders.
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Historical Perspective: LXRβ

Liver X receptors, LXRα and LXRβ, are members of the nuclear receptor
family of ligand-activated transcription factors (1). The first cloned mem-
ber, initially named RLD1 and liver X receptor (2, 3), was later renamed
LXRα. Our laboratory discovered LXRβ, originally calling it OR-1 (4). Other
labs simultaneously identified it under various names: UR (5), NER (6), and
RIP-15 (7). Its similarity to LXRα led to its current name, LXRβ.

LXRα is well-known for its role in cholesterol homeostasis, with both
receptors often dubbed master regulators of this process (8, 9). Oxys-
terols, which are oxygenated forms of cholesterol, serve as natural lig-
ands for LXRs. While LXRs are most recognized for their influence on
cholesterol homeostasis, LXRβ’s functions extend far beyond. It regulates
various transport mechanisms, including aquaporins for water transport
(10–12), GLUT4 for glucose transport (13), MCT8 and MCT10 for thyroid
hormone transport (14), and ApoE and ABC transporters for cholesterol
transport (15). This diverse involvement explains LXRβ’s wide-ranging
effects throughout the body.

Research on LXRα has primarily focused on organs involved in lipid
metabolism, such as the liver, intestine, adipose tissue, and within the im-
mune system, particularly in macrophages (16). In contrast, LXRβ shows
a broader tissue distribution. While its liver expression is minimal, LXRβ

is well-expressed in immune system cells, CNS glial cells, the colon, gall-
bladder, pancreatic islets, retina, and inner ear (17–23). It is also widely
expressed in fetal brain neurons (24, 25). Both LXRα and LXRβ are present
in reproductive tissues like the ovary, testis, prostate epithelium, and epi-
didymis, where they play significant roles (26–29).

LXRs form heterodimers with retinoid X receptors (RXRs) and bind to
specific DNA response elements called DR4s. These are direct repeats of
the half-site sequence 5′-G/AGGTCA-3′, separated by four nucleotides,
also used by thyroid hormone receptors (3). Our research has shown that
LXRβ protects neurons in both central and peripheral nervous systems.
This protection extends to dopaminergic neurons in the substantia nigra
(30), large motor neurons in the spinal cord’s ventral horn (31, 32), ep-
ithelial cells of the choroid plexus (11), retinal ganglion cells (22), and
spiral ganglion neurons (23). Recent reviews have thoroughly explored
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LXRs’ role in neurodegenerative diseases like Alzheimer’s disease (AD) (8,
33), Parkinson’s disease (PD) (34, 35), amyotrophic lateral sclerosis (ALS)
(36), and multiple sclerosis (MS) (37).

Role of LXRβ in Depression
Studies have demonstrated LXRβ’s protective effects against depression-
like behaviors in rodents, influencing neurons, microglia, oligodendro-
cytes, and astrocytes (Table 1). In rats exposed to chronic unpredictable
stress (CUS), hippocampal LXRβ levels decrease. Treatment with the LXR
agonist GW3965 reduces depression-like behavior and improves hip-
pocampal neurogenesis in these rats (38). LXR’s inhibition of microglial
activation and neuroinflammation is a crucial protective mechanism,
as seen in various injury paradigms (39–43). Several studies show that
GW3965 treatment can modulate microglial status and suppress neuroin-
flammation, thereby improving emotional and cognitive functions as well
as reducing depression-like behaviors in CUS-induced and other experi-
mental paradigms (44–47). Additionally, GW3965’s stimulation of oligo-
dendrocyte maturation and enhanced myelination may contribute to the
antidepressant effects of LXR agonists (48).

While LXR’s role in depression-like behaviors has been extensively
studied in mice (Table 1), research on LXR in the human brain is limited.
Only one study to date has explored this connection (49), identifying a
link between impaired LXR signaling and schizophrenia. RNA sequencing
of dysfunctional dorsolateral prefrontal cortex gray matter revealed gene
expression patterns indicative of abnormalities in LXR-regulated lipid
metabolism pathways in schizophrenia patients. The study concluded that
aberrations in LXR/RXR-regulated lipid metabolism lead to decreased
lipid content in the prefrontal cortex, correlating with reduced cognitive
performance.

Role of LXRβ in Anxiety
Anxiety disorders are the most prevalent psychiatric conditions (50). Fe-
male mice lacking LXRβ exhibit anxiety-like behavior and impaired be-
havioral responses (Table 1) (51). These mice show reduced expression
of glutamate decarboxylase (65+67), the enzyme responsible for GABA
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Table 1. Summary of LXRβ effects on depression-like and anxiety-like behaviors in experimental rodent paradigms

Neuropsychiatric-
related behaviors Experimental paradigm

LXRβ

ligand Effects Reference

Depression-like Chronic unpredictable stress (CUS)
exposure in rats

GW3965 Regulation of hippocampal neurogenesis (38)

CUS and lipopolysaccharide exposure
in mice

GW3965 Inhibits microglial M1 polarization and restores
synaptic plasticity

(44)

CUS exposure in mice GW3965 Suppresses microglial activation and
neuroinflammation in hippocampal subregions

(45)

CUS exposure in mice GW3965 Improvement of oligodendrocyte maturation and
enhancement of myelination

(48)

CUMS and corticosterone drinking
paradigm in mice

T0901317 Suppresses neuroinflammation by inhibiting NF-κB
signaling and NLRP3 inflammasome activation

(46)

Anxiety-like LXRβ-deficient female mice – Decreased glutamic acid decarboxylase (65+67) in
the ventromedial PFC

(51)

LXRβ-deficient male mice – Abnormality in locomotor activity and exploratory
behavior, demyelination

(52)

Forced swimming stress exposure in
mice

GW3965 Rebalancing excitatory and inhibitory
neurotransmission

(54)

Astrocyte-specific LXRβ-deficient
mice

– Impaired synaptic transmission in mPFC (53)

synthesis, in the ventromedial prefrontal cortex (PFC). Further studies
demonstrated that loss of LXRβ function results in abnormalities in lo-
comotor activity and exploratory behavior, as well as anxiety-like symp-
toms (52). LXR is expressed in microglia, astrocytes, and oligodendrocytes
in the adult mouse CNS (18). Intriguingly, specific deletion of LXRβ from
astrocytes resulted in anxiety-like, but not depression-like behaviors in
adult male mice (53). This work suggests that astrocytic LXRβ in the me-
dial PFC plays a critical role in regulating synaptic transmission. In an ex-
perimental paradigm of stress-induced anxiety-like behavior, the LXR ag-
onist GW3965 exerted anxiolytic effects by restoring the balance between
excitatory and inhibitory neurotransmission through LXRβ signaling acti-
vation in the amygdala (54).

Role of LXRβ in Autism
Autism, now referred to as autism spectrum disorder (ASD), is a pervasive
neurodevelopmental disorder. Defects in dentate gyrus neurogenesis ap-
pear to be implicated in the development of ASD-like behaviors. LXRβ-
deficient mice exhibited early alterations in dentate gyrus neurogenesis
and displayed autistic-like behaviors, such as deficits in social interaction
and repetitive behaviors (55). Additionally, LXR agonist T0901317 atten-
uated social deficits and stereotypical behaviors in BTBR T+tf/J (BTBR)
and valproic acid (VPA) experimental paradigms (56).

Improving hippocampal neurogenesis appears to be a novel strategy
for ASD treatment (57). LXRβ signaling regulates neurogenesis and en-
hances cognitive function (58–63). In 2019, Theofilopoulos et al. illus-
trated that 24(S),25-epoxycholesterol, the most potent and abundant
LXR ligand in the developing mouse midbrain, along with cholesterol 24S-
hydroxylase (CYP46A1) overexpression, facilitated midbrain dopaminer-
gic neurogenesis in vivo (64). Notably, the 15q11.2 copy number vari-
ation (CNV) containing the CYFIP1 gene is associated with autism and
schizophrenia. In 2024, De La Fuente et al. recently established a connec-
tion between LXRβ deficiency and neurodevelopmental disorders (65).
This study revealed that the strong interaction of LXRβ with 24(S),25-
epoxycholesterol is essential for neuronal maturation, while low activa-
tion of LXRβ leads to maintenance of the neuronal precursor phenotype.
The study delineates LXR-mediated oxysterol regulation of neurogene-
sis as a pathological mechanism in neural cells carrying the 15q11.2 CNV
and provides a potential target for therapeutic strategies for associated
disorders.

In 2024, Menteşe Babayiğit et al. demonstrated that there is no as-
sociation between the identified LXRβ (rs2695121/rs17373080) single

nucleotide polymorphism and ASD (66). The study cohort comprised
107 children with autism (aged 2-18 years) and 103 age-matched chil-
dren without autism. Despite the negative genetic association their data
revealed that, compared to healthy developing children, those with ASD
exhibited significantly higher levels of total cholesterol, low-density
lipoprotein, and triglycerides, alongside markedly decreased levels of
27-hydroxycholesterol, suggesting its potential as a diagnostic marker
for ASD.

Concluding Remarks
The available evidence suggests that LXRβ plays a pivotal role in prevent-
ing CNS disease in experimental rodent paradigms. If these observations
translate to humans, LXRβ could emerge as a novel therapeutic target for
treating neuropsychiatric disorders, particularly depression and anxiety.
However, additional basic research and clinical trials are imperative to as-
certain whether novel drugs targeting LXRβ can be effectively utilized in
the clinical treatment of neurological and neuropsychiatric diseases.
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